
System Composer™
Getting Started Guide

R2022b



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Composer™ Getting Started Guide
© COPYRIGHT 2019–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)
March 2021 Online only Revised for Version 2.0 (Release 2021a)
September 2021 Online only Revised for Version 2.1 (Release 2021b)
March 2022 Online only Revised for Version 2.2 (Release 2022a)
September 2022 Online only Revised for Version 2.3 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Product Overview
1

System Composer Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Compose an Architecture Model
2

Compose and Analyze Systems Using Architecture Models . . . . . . . . . . . . 2-2

Create Architecture Model with Interfaces and Requirement Links . . . . 2-4
Visually Represent System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Edit Data Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Decompose Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Robot Arm Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Manage Requirement Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

Extend Architectural Design Using Stereotypes . . . . . . . . . . . . . . . . . . . . 2-18
Mobile Robot Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Load Architecture Model Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Apply Stereotypes to Model Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Set Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

Analyze Architecture Model with Analysis Function . . . . . . . . . . . . . . . . 2-24
Mobile Robot Architecture Model with Properties . . . . . . . . . . . . . . . . . . 2-24
Perform Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25

Inspect Components in Custom Architecture Views . . . . . . . . . . . . . . . . . 2-29
Mobile Robot Architecture Model with Properties . . . . . . . . . . . . . . . . . . 2-29
Create Spotlight Views from Components . . . . . . . . . . . . . . . . . . . . . . . . 2-30
Create Filtered Architecture View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31

Implement Behaviors for Architecture Model Simulation . . . . . . . . . . . . 2-36
Robot Arm Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
Reference Simulink Behavior Model in Component . . . . . . . . . . . . . . . . . 2-37
Add Stateflow Chart Behavior to Component . . . . . . . . . . . . . . . . . . . . . 2-40
Design Software Architecture in Component . . . . . . . . . . . . . . . . . . . . . . 2-41
Represent System Interaction Using Sequence Diagrams . . . . . . . . . . . . 2-43

iii

Contents



System Composer Terminology
3

System Composer Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Author Architecture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Manage Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Manage Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Author Physical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Extend Architectural Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Manage and Verify Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Allocate Architecture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
Create Custom Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Analyze Architecture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
Author Sequence Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Author Model Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
Design Software Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23

iv Contents



Product Overview

1



System Composer Product Description
Design and analyze system and software architectures

System Composer enables the specification and analysis of architectures for model-based systems
engineering and software architecture modeling. With System Composer, you allocate requirements
while refining an architecture model that can then be designed and simulated in Simulink®. 

Architecture models consisting of components and interfaces can be authored directly, imported from
other tools, or populated from the architectural elements of Simulink designs. You can describe your
system using multiple architecture models and establish direct relationships between them via model-
to-model allocations. Behaviors can be captured in sequence diagrams, state charts, or Simulink
models. You can define and simulate the execution order of component functions and generate code
from your software architecture models (with Simulink and Embedded Coder®).

To investigate specific design or analysis concerns, you can create custom live views of the model.
Architecture models can be used to analyze requirements, capture properties via stereotyping,
perform trade studies, and produce specifications and interface control documents (ICDs).

1 Product Overview

1-2



Compose an Architecture Model

• “Compose and Analyze Systems Using Architecture Models” on page 2-2
• “Create Architecture Model with Interfaces and Requirement Links” on page 2-4
• “Extend Architectural Design Using Stereotypes” on page 2-18
• “Analyze Architecture Model with Analysis Function” on page 2-24
• “Inspect Components in Custom Architecture Views” on page 2-29
• “Implement Behaviors for Architecture Model Simulation” on page 2-36

2



Compose and Analyze Systems Using Architecture Models
A system refers to a composition of elements that interact to achieve a goal no single element could
accomplish on its own. The constituent elements of a system can include mechanical parts, electrical
circuits, computer hardware, and software. A system specification describes the system elements,
their characteristics and properties, their interactions with each other, and the desired interaction (or
interface) of the overall system with its environment.

System Composer allows you to describe systems in terms of architecture models as a combination of
structural elements with underlying behavioral descriptions. These descriptive models can sometimes
be presented as distinct diagrams that are consistent with each other.

To perform a basic systems engineering workflow to design a mobile robotic arm using System
Composer, see “Create Architecture Model with Interfaces and Requirement Links” on page 2-4.

The model-based systems engineering (MBSE) workflow enabled by System Composer involves
starting with stakeholder needs, identifying requirements and use cases, designing an architecture
iteratively, and implementing functionality using behavior models. You can also use analyses and
trade studies to optimize architectural design and communicate facets of the system using
architecture views. This figure illustrates an MBSE workflow.

With System Composer, you can implement a systems engineering workflow.

2 Compose an Architecture Model

2-2



1 Author architecture models and define system requirements:

• Create hierarchical models of system structure that represent functional, logical, or physical
decompositions of the system using components, ports, and connectors.

• Import models from MATLAB® tables and export them with System Composer changes.
• Edit and view the instance-specific parameters specified as model arguments on a component

or architecture using the Parameter Editor.
• Create and manage data interfaces between structural architectural elements using the

Interface Editor.
• Manage model-to-model allocations to show relationships between software components and

hardware components and to indicate deployment strategies using the Allocation Editor.
• Refine and elaborate requirements using Requirements Toolbox™ in the Requirements

Editor. Link requirements to architectural model elements.
2 Define metadata, generate views, describe system behavior, and analyze architectures:

• Extend base architectural elements to create domain-specific conceptual representations
using the Profile Editor.

• Filter views of the system structure using a component diagram, hierarchy diagram, or class
diagram in the Architecture Views Gallery.

• Represent the interaction between structural elements of an architecture as a sequence of
message exchanges with a sequence diagram in the Architecture Views Gallery.

• Perform static analysis and trade studies to optimize architectures using the Instantiate
Architecture Model and the Analysis Viewer tools.

3 Implement component behavior and use simulation-based workflows to verify requirements:

• Specify component behavior using block diagrams in Simulink, state machines in Stateflow®,
and physical interfaces in Simscape™ using subsystem behaviors.

• Design a software architecture model, define the execution order of the functions from the
components in the Functions Editor, simulate the design at the architecture level, and
generate code.

• Verify and validate requirements with Simulink Test™ using the Test Manager.
• Generate reports using Simulink Report Generator™. For more information, see “System

Composer Report Generation for System Architectures”.

For definitions and applications of common System Composer terms and concepts, see “System
Composer Concepts” on page 3-2.

See Also

More About
• “Create Architecture Model with Interfaces and Requirement Links” on page 2-4

 Compose and Analyze Systems Using Architecture Models

2-3



Create Architecture Model with Interfaces and Requirement
Links

In this section...
“Visually Represent System” on page 2-4
“Edit Data Interfaces” on page 2-12
“Decompose Components” on page 2-14
“Robot Arm Architecture Model” on page 2-15
“Manage Requirement Links” on page 2-16

Create an architecture model of a robot arm using System Composer. Define interfaces on ports and
link requirements on components. When you complete these steps, you will have created a completed
Robot model.

A Requirements Toolbox license is required to manage requirements.

Visually Represent System
Implementing an architectural design starts with visually representing the system using components
and their connections. Create an architecture model, represent the system components, and draw the
connections between them.

Create Architecture Model

1 Enter this command in the MATLAB Command Window.

systemcomposer

The Simulink Start Page opens to System Composer.
2 Click Architecture Model.

2 Compose an Architecture Model

2-4



A new, blank architecture model canvas opens. You can identify an architecture model by the
badge in the lower left corner and the component palette on the left side.

 Create Architecture Model with Interfaces and Requirement Links

2-5



3 Double-click the architecture model header and change untitled to a descriptive model name,
for example, RobotDesign. The name of the model generally reflects the system whose
architecture you are building.

2 Compose an Architecture Model

2-6



4 Save the model.

Draw Components

Design a mobile robotic arm where a sensor senses position and trajectory planning computes a path
to a location that the robot needs to reach using motion. An architecture model of such a system
could consist of three primary components: Sensors, Trajectory Planning, and Motion. You can
represent these components in System Composer using three Component blocks.

1 Click and drag a Component  from the left-side palette.

 Create Architecture Model with Interfaces and Requirement Links

2-7



2 Rename the component as Sensors.
3 Follow these steps to create Trajectory Planning and Motion components.

2 Compose an Architecture Model

2-8



Create Ports and Connections

You can begin to create connectivity between components by describing the flow of power, energy,
data, or any other representative information. Create ports on the components that provide or
consume information and connectors that bind two component ports to represent the flow of the
information.

You can add a port to a component on any side, and the port can have either an input or output
direction. To create a port, pause your cursor over a component side. Click and release to view port
options. Select either Input, Output, or Physical to create a port. Rename the port using a name
that represents the information that flows through that port.

1 Create an output port on the bottom side of the Sensors component. Rename it SensorData.

 Create Architecture Model with Interfaces and Requirement Links

2-9



2 Click and drag a line from the SensorData output port to the Motion component. When you see
an input port created at the component side, release the pointer. By default, this new port has the
same name as the source port.

3 Pause on the corner of the SensorData line until you see the branch icon . Right-click and
drag a branch line to the Trajectory Planning component.

2 Compose an Architecture Model

2-10



4 Complete the connections as shown in this figure.

 Create Architecture Model with Interfaces and Requirement Links

2-11



The root level of the architecture model can also have ports that describe the interaction of the
system with its environment. In this example, the target position for the robot is provided by a
computer external to the robot itself. Represent this relationship with an input port.

1 Click the left edge of the architecture model and enter the port name TargetPosition.

2 Connect an architecture port to a component by dragging a line from the TargetPosition input
port to the Trajectory Planning component. Connections to or from an architecture port
appear as tags.

Edit Data Interfaces
You can define a data interface to fully specify a connection and its associated ports. A data interface
can consist of multiple data elements with various dimensions, units, and data types. To check for
consistency when connecting a port, you can also associate interfaces with unconnected ports during
component design.

Specify the information flow through a port between components by configuring the data interface
with attributes. A data interface can be as simple as sending an integer value, but it can also be a set
of numbers, an enumeration, a combination of numbers and strings, or a bundle of other predefined
interfaces.

Consider the data interface between the Sensors and the Motion components. The sensor data
consists of:

• Position data from two motors
• Obstacle proximity data from two sensors
• A time stamp to capture the freshness of the data

1 To open the Interface Editor, navigate to Modeling > Interface Editor.
2

Click the  button to add a data interface. Name the interface sensordata.

The data interface is named and defined separately from a component port and then assigned to
a port.

2 Compose an Architecture Model

2-12



3 Click the SensorData output port on the Sensors component. In the Interface Editor, right-
click sensordata and select Assign to Selected Port(s).

If you click sensordata again, the three SensorData ports are highlighted, indicating the ports
are associated with that interface.

4 Add a data element to the selected data interface. Click the  button to add a data element and
name it timestamp.

5 Continue adding data elements to the data interface as specified by clicking the add data element
button.

Name Type Units
timestamp double seconds
position1 for motor 1 double degrees
position2 for motor 2 double degrees
distance1 for sensor 1 double meters
direction1 for sensor 1 double degrees
distance2 for sensor 2 double meters
direction2 for sensor 2 double degrees

6 Edit the properties of a data element in the Interface Editor. Click on the cell corresponding to
the data element in the table and add units as shown in the specification.

Click the drop-down list next to the  button to save the data interface to a data dictionary. A
data dictionary allows you to collectively manage and share a set of interfaces among models. For
instance, later in the design, if you choose to model the external computer as a separate
architecture model, then this model and the Robot model can share the same data dictionary.
Here, the dictionary is saved as RobotDD.

 Create Architecture Model with Interfaces and Requirement Links

2-13



Decompose Components
Each component can have its own architecture. Double-click a component to decompose it into its
subcomponents.

1 Double-click the Trajectory Planning component. The Explorer Bar and Model Browser
indicates the position of the component in the model hierarchy.

2 Compose an Architecture Model

2-14



This component first uses the motor position data that is part of the sensordata interface to
compute the ideal position and velocity command. It then processes the obstacle distance
information in the same interface to condition this motion command according to some safety
rules.

2 Add Motion Control and Safety Rules components as part of the Trajectory Planning
architecture.

Drag the TargetPosition port to the Motion Control component. Add a Command output
port to Motion Control, then drag a line to the Safety Rules component. Drag lines from
the SensorData port to the Motion Control and Safety Rules components.

Robot Arm Architecture Model

Open the architecture model of a robot arm that consists of sensors, motion actuators, and a planning
algorithm. You can use System Composer to view the interfaces and manage the requirements for this
model.

 Create Architecture Model with Interfaces and Requirement Links

2-15



Manage Requirement Links
Requirements are integral to the systems engineering process. Some requirements relate to the
functionality of the overall system, and some relate to aspects of performance such as power, size,
and weight. Decomposing high-level requirements into low-level requirements and deriving additional
requirements is crucial to defining the architecture of the overall system. For instance, the overall
power consumption of the robot determines the requirement for the power consumption of the robot
controller.

To allocate and trace requirements with system elements, System Composer fully integrates with
Requirements Toolbox. To derive appropriate requirements, you must sometimes analyze and specify
properties (such as power) for elements of the system including components, ports, or connectors.
For example, if the total cost of the system is a concern, a unitPrice property is necessary.

Manage requirements from the Requirements Perspective in System Composer using Requirements
Toolbox. Navigate to Apps > Requirements Manager.

2 Compose an Architecture Model

2-16



To enhance the traceability of requirements, link requirements to architectural components and
ports. When you click a component in the Requirements Perspective, linked requirements are
highlighted. Conversely, when you click a requirement, the linked components are shown. To directly
create a link, drag a requirement onto a component or a port.

See Also

More About
• “System Composer Concepts” on page 3-2

 Create Architecture Model with Interfaces and Requirement Links

2-17



Extend Architectural Design Using Stereotypes
In this section...
“Mobile Robot Architecture Model” on page 2-18
“Load Architecture Model Profile” on page 2-19
“Apply Stereotypes to Model Elements” on page 2-21
“Set Properties” on page 2-22

You can add the unitPrice property to an electrical component using a stereotype. A stereotype
extends the modeling language with domain-specific metadata. A stereotype adds properties to the
root-level architecture, component architecture, ports, connectors, data interfaces, value types,
functions, requirements, and requirement links. You can also apply a stereotype to only a specific
element type, such as component architectures. When a model element has a stereotype applied, you
can specify property values as part of its architectural definition. In addition to allowing you to
manage properties relevant to the system specification within the architecture model, stereotypes
and associated properties also allow you to analyze an architecture model.

A profile contains a set of model element stereotypes with custom properties. Each profile contains a
set of stereotypes, and each stereotype contains a set of properties.

For more information, see “Extend Architectural Elements” on page 3-10.

This example will show you how to compute the total cost of the system given the cost of its
constituent parts. The example profile is limited to this goal. Start this tutorial with the following
mobile robot architecture model without a profile applied. Use the model to follow the steps and
populate its elements with stereotypes and properties.

Mobile Robot Architecture Model

This example shows a mobile robot architecture model with no properties defined. You can apply the
stereotypes from the profile simpleProfile.xml.

Use the Property Inspector to set the properties on each component.

2 Compose an Architecture Model

2-18



Load Architecture Model Profile
Load a profile to make stereotypes available for model elements. This procedure uses the model
ex_RobotArch.slx. Navigate to Modeling > Profile Editor to open the Profile Editor. Open the
profile file simpleProfile.xml to load the profile.

In the Profile Browser, select the sysConnector stereotype. Select Show inherited properties
(read-only) to view properties inherited from the base stereotype.

 Extend Architectural Design Using Stereotypes

2-19



In the profile, observe these stereotypes.

Stereotype Application Properties
sysBaseStereot
ype

components, ports, connectors unitPrice (double, USD,Default: 5)

totalPrice (double, USD)
sysComponent components weight (double, kg)

Inherits properties from
sysBaseStereotype

sysConnector connectors length (double, m)

weight (double, kg/m)

Inherits properties from
sysBaseStereotype

sysGeneral components, ports, connectors ID (int16)

Note (string)
sysPort ports Inherits properties from

sysBaseStereotype

Importing the profile makes stereotypes available to their applicable elements.

2 Compose an Architecture Model

2-20



• sysBaseStereotype stereotype, applicable to all element types, includes shared properties such
as unitPrice and totalPrice.

• sysComponent stereotype applies only to components, and includes properties such as weight
that contributes to the total weight and properties inherited from the sysBaseStereotype
stereotype with cost specifications of the robot system.

• sysConnector stereotype applies to connectors and includes length and weight properties
defined per meter (assuming a physical connector, such as a wire). These properties and the
properties inherited from the sysBaseStereotype stereotype help compute the total weight and
cost of the design.

• sysGeneral is a general stereotype, applicable to all element types, that enables adding generic
properties such as a Note, which project members can use to track any issues with the element.

• sysPort stereotype applies to ports and does not include any properties except those inherited
from sysBaseStereotype.

Apply Stereotypes to Model Elements
Add custom properties to a model element by applying a stereotype from a loaded profile.

1
On the toolstrip, navigate to Modeling > Profile Editor > Import .

2 Select simpleProfile.
3 On the toolstrip, navigate to Modeling > Apply Stereotypes to open the Apply Stereotypes

dialog box.
4 From Apply stereotype(s) to, select All elements. From Scope, select This layer.

In the list of available stereotypes, select simpleProfile.sysGeneral.

 Extend Architectural Design Using Stereotypes

2-21



Click Apply.
5 From Apply stereotype(s) to, select Components. From Scope, select Entire model.

In the list of available stereotypes, select simpleProfile.sysComponent.

Click Apply.
6 From Apply stereotype(s) to, select Connectors. From Scope, select Entire model.

In the list of available stereotypes, select simpleProfile.sysConnector.

Click Apply.
7 From Apply stereotype(s) to, select Ports. From Scope, select Entire model.

In the list of available stereotypes, select simpleProfile.sysPort.

Click Apply.

Set Properties
Set the property values to enable cost analysis. Follow this example for the GPS module.

1 In the Sensors component, select the GPS component.
2 Open the Property Inspector by navigating to Modeling > Property Inspector.
3 Expand the sysComponent stereotype to see the properties.

2 Compose an Architecture Model

2-22



4 Set unitPrice to 10 and press Enter.
5 Select the GPSData port connector. Check that length is set to 3, weight is set to 12, and that

unitPrice is set to 5.

6 Finish defining metadata across the model for each element using desired property values. Pin
the Property Inspector to the editor to keep the Property Inspector visible during this
operation.

See Also

More About
• “System Composer Concepts” on page 3-2

 Extend Architectural Design Using Stereotypes

2-23



Analyze Architecture Model with Analysis Function
In this section...
“Mobile Robot Architecture Model with Properties” on page 2-24
“Perform Analysis” on page 2-25

With properties specified on model elements, you can use MATLAB to perform analysis and calculate
total cost for all elements within the design. You can then create additional derived requirements for
the designers of individual components in the system, such as Trajectory Planning or Sensors.

Perform static analyses based on element properties to perform data-driven trade studies and verify
system requirements. Consider a robot architecture model where total cost is a consideration. For
this tutorial, you will use the mobile robot architecture model with properties to perform static
analysis.

Mobile Robot Architecture Model with Properties

This example shows a mobile robot architecture model with stereotypes applied to components and
properties defined.

2 Compose an Architecture Model

2-24



Perform Analysis
Analyze the total cost for all components in the robot model. This procedure uses the model
ex_RobotArch_props.slx.

1 Navigate to Modeling > Analysis Model to open the Instantiate Architecture Model tool.
2 Add an analysis function. In the Analysis function box, enter the function name

ex_RobotArch_analysis_new without an extension, and then click the  button. A MATLAB
function file is created and saved with the name ex_RobotArch_analysis_new.m.

 Analyze Architecture Model with Analysis Function

2-25



The analysis function includes constructs that get properties from model elements, given as a
template. Modify this template to add the cost of individual elements and obtain total cost for
their parent architecture. This function computes the cost for one model element as a total of its
own cost and the cost of all of its child components. Copy and paste the function below into your
analysis function.
function ex_RobotArch_analysis_new(instance,varargin)
    
    if instance.isComponent()
        if instance.hasValue("sysBaseStereotype.unitPrice")
            sysComponent_totalPrice = instance.getValue("sysBaseStereotype.unitPrice");
        else
            sysComponent_totalPrice = 0;
        end
        if ~isempty(instance.Components)        
            for child = instance.Components
                if child.hasValue("sysBaseStereotype.totalPrice")
                    comp_price = child.getValue("sysBaseStereotype.totalPrice");
                    sysComponent_totalPrice = sysComponent_totalPrice + comp_price;
                end
            end
        end
        sysPort_totalPrice = 0;
        for port = instance.Ports
            if port.hasValue("sysBaseStereotype.unitPrice")
                unitPrice = port.getValue("sysBaseStereotype.unitPrice");

2 Compose an Architecture Model

2-26



                sysPort_totalPrice = sysPort_totalPrice + unitPrice;
            end
        end
        sysConnector_totalPrice = 0;
        for connector = instance.Connectors
            if connector.hasValue("sysBaseStereotype.unitPrice")
                unitPrice = connector.getValue("sysBaseStereotype.unitPrice");
                length = connector.getValue("sysConnector.length");
                sysConnector_totalPrice = sysConnector_totalPrice + unitPrice*length;
            end
        end
        if (instance.hasValue("sysBaseStereotype.totalPrice"))
            totalPrice = sysComponent_totalPrice + sysPort_totalPrice + sysConnector_totalPrice;
            instance.setValue("sysBaseStereotype.totalPrice",totalPrice);
        end
    end
end

3 Return to the Instantiate Architecture Model tool, select all the stereotypes, and click
Instantiate. The Analysis Viewer opens and shows the properties of each model element. The
default values for the start of the analysis are taken from the property values you entered when
you attached the stereotype to the model and edited their values.

4 In the Analysis section, select BottomUp as the iteration method, then click Analyze.

The cost of each element is added bottom-up to find the cost of the system. The result is written
to the analysis instance and is visible in the Analysis Viewer.

The total costs are highlighted in yellow as computed values. The top row represents the grand
total for the ex_RobotArch_props architecture.

 Analyze Architecture Model with Analysis Function

2-27



See Also

More About
• “System Composer Concepts” on page 3-2

2 Compose an Architecture Model

2-28



Inspect Components in Custom Architecture Views
In this section...
“Mobile Robot Architecture Model with Properties” on page 2-29
“Create Spotlight Views from Components” on page 2-30
“Create Filtered Architecture View” on page 2-31

View the hierarchy and connectivity of a component in a specialized view. Specialized views allow you
to create simpler diagrams that show only a subset of the original model elements for a specific
design activity or concern.

Use the following System Composer architecture model in this tutorial.

Mobile Robot Architecture Model with Properties

This example shows a mobile robot architecture model with stereotypes applied to components and
properties defined.

 Inspect Components in Custom Architecture Views

2-29



Create Spotlight Views from Components
Create views dynamically using spotlight views.

1 Double-click the Sensors component, then select the DataProcessing component.
2 Select the DataProcessing component and navigate to Modeling > Architecture Views >

Spotlight. Alternatively, right-click the DataProcessing component and select Create
Spotlight from Component.

The spotlight view launches and shows all model elements to which the DataProcessing
component connects. The spotlight diagram is laid out automatically and cannot be edited.
However, it allows you to inspect just a single component and study its connectivity to other
components.

Note  Spotlight views are transient. They are not saved with the model.

2 Compose an Architecture Model

2-30



3 Shift the spotlight to another component. Select the Motion component. Click the ellipsis above

the component to open the action menu. To create a spotlight from the component, click .

To view the architecture model at the level of a particular component, select the component and
click .

4
To return to the architecture model view, click .

You can make the hierarchy and connectivity of a component visible at all times during model
development by opening the spotlight view in a separate window. To show the spotlight view in a
dedicated window, in the component context menu, select Open in New Window, then create the
spotlight view. Spotlight views are dynamic and transient: any change in the composition refreshes
any open spotlight views, and spotlight views are not saved with the model.

Create Filtered Architecture View
Create filtered architecture views to demonstrate specific perspectives with a component diagram or
a hierarchy diagram.

1 Navigate to Modeling > Architecture Views to open the Architecture Views Gallery.

 Inspect Components in Custom Architecture Views

2-31



2
Select  New > View to create a new view.

3 In View Properties on the right pane, in the Name box, enter a name for this view, for example,
System Elements. If necessary, choose a Color and enter a Description.

4 In the bottom pane on View Configurations, from the Filter tab, click Add Component Filter
to add new form-based criterion to a component filter.

5 From the Select list, select Components. From the Where list, select Stereotype. In the text
box, select simpleProfile.sysComponent from the list.

6
Click Apply .

An architecture view is created using the query in the Component Filter box. The view is
filtered to select all components with the simpleProfile.sysComponent stereotype applied to
them.

2 Compose an Architecture Model

2-32



7 In the Diagram section of the toolstrip, click Component Hierarchy to display the components
in tree form with parents above children.

8 In the Diagram section of the toolstrip, click Architecture Hierarchy to display unique
architecture types and their relationships using composition connections.

 Inspect Components in Custom Architecture Views

2-33



2 Compose an Architecture Model

2-34



See Also

More About
• “System Composer Concepts” on page 3-2

 Inspect Components in Custom Architecture Views

2-35



Implement Behaviors for Architecture Model Simulation
In this section...
“Robot Arm Architecture Model” on page 2-36
“Reference Simulink Behavior Model in Component” on page 2-37
“Add Stateflow Chart Behavior to Component” on page 2-40
“Design Software Architecture in Component” on page 2-41
“Represent System Interaction Using Sequence Diagrams” on page 2-43

A basic systems engineering workflow in System Composer includes composing an architecture
system, defining requirements, adding metadata, performing analyses, and representing the
architecture through views. After fulfilling these steps, your system design is closer to meeting
stakeholder goals and customer needs.

You can also now begin to design the actual system components using Simulink, Stateflow, and
Simscape. You can fully specify, test, and analyze the behavior of a component using the model-based
design process.

In this tutorial, you will perform these steps on the robot arm architecture model.

Robot Arm Architecture Model

Open the architecture model of a robot arm that consists of sensors, motion actuators, and a planning
algorithm. You can use System Composer to view the interfaces and manage the requirements for this
model.

2 Compose an Architecture Model

2-36



Reference Simulink Behavior Model in Component
When a component does not require further architectural decomposition, you can enable model
simulation and an end-to-end workflow. To enable model simulation, implement Simulink behaviors
for components. You can associate a Simulink model with a component or link to an existing Simulink
model or subsystem.

1 Navigate to Modeling > Create Simulink Behavior. Alternatively, right-click the Motion
component and select Create Simulink Behavior.

2 From the Type list, select Model Reference. Provide the model name MotionSimulink. The
default name is the name of the component.

 Implement Behaviors for Architecture Model Simulation

2-37



3 A new Simulink model file with the provided name is created in the current folder. The root-level
ports of the Simulink model reflect the ports of the component. The component in the
architecture model is linked to the Simulink model. The  icon on the component indicates that
the component has a Simulink behavior.

4 To view the interfaces on the SensorData port converted into Simulink bus elements, double-
click the port in Simulink.

2 Compose an Architecture Model

2-38



5 To remove model behavior, right-click the linked Motion component and select Inline Model.

You can also link to an existing Simulink behavior model from a System Composer component,
provided that the component is not already linked to a reference architecture. Right-click the
component and select Link to Model. You can type or browse for the name of a Simulink model.

You can also link a referenced Simulink subsystem behavior to a component. Use subsystem
references to author Simulink or Simscape behaviors with physical ports, connections, and blocks.

1 Navigate to Modeling > Create Simulink Behavior. Alternatively, right-click the Motion
component and select Create Simulink Behavior. Alternatively,

2 From the Type list, select Subsystem Reference. Provide the model name MotionSubsystem.
The default name is the name of the component.

3 A new Simulink subsystem file with the provided name is created in the current folder. The root-
level ports of the Simulink subsystem reflect the ports of the component. The component in the
architecture model is linked to the Simulink subsystem. The  icon on the component indicates
that the component has a Simulink subsystem behavior.

 Implement Behaviors for Architecture Model Simulation

2-39



Add Stateflow Chart Behavior to Component
To implement event-based modeling with state machines, add Stateflow chart behavior to a
component. State charts consist of a finite set of states with transitions between them to capture the
modes of operation for the component. This functionality requires a Stateflow license.

A System Composer component with stereotypes, interfaces, requirement links, and ports, is
preserved when you add Stateflow Chart behavior.

1 Right-click the Sensor component and select Create Stateflow Chart Behavior.
Alternatively, select the Sensor component, then navigate to Modeling > Create Stateflow
Chart Behavior.

2 Double-click Sensor, which has the Stateflow icon. From the Modeling menu, click Symbols
Pane to view the Stateflow symbols. The input port Encoder appears as input data in the
symbols pane and the output port SensorData appears as output data.

3 Select the SensorData output and view the interface in the Property Inspector. You can access
this interface like a Simulink bus signal.

2 Compose an Architecture Model

2-40



Design Software Architecture in Component
To design a software architecture, define function execution order, simulate, and generate code,
create a software architecture from a System Composer component.

1 Rename the Trajectory Planning component to TrajectoryPlanning so that it is a valid C
variable name.

2 Right-click the TrajectoryPlanning component and select Create Software
Architecture Model, or, navigate to Modeling > Create Software Architecture Model.

3 Specify the name of the software architecture as TrajectorySoftware. Click OK.

 Implement Behaviors for Architecture Model Simulation

2-41



4 The software architecture model TrajectorySoftware.slx is referenced from the
TrajectoryPlanning component.

5 Double-click the TrajectoryPlanning component to interact with the TrajectorySoftware
software component.

2 Compose an Architecture Model

2-42



Represent System Interaction Using Sequence Diagrams
To represent the interaction between structural elements of an architecture as a sequence of
message exchanges, use a sequence diagram in the Architecture Views Gallery.

Observe the robot arm architecture model consisting of components, ports, connections, and
behaviors. The model simulation results must match the interactions within the sequence diagrams.

1 Create a new sequence diagram by navigating to Modeling > Sequence Diagram. The

Architecture Views Gallery opens. To create a new sequence diagram, click  New >
Sequence Diagram.

2 A new sequence diagram called SequenceDiagram1 is created in the View Browser, and the
Sequence Diagram tab becomes active. Under Sequence Diagram Properties, rename the
sequence diagram RobotArmSequence.

3
Select Component > Add Lifeline  to add a lifeline. A new lifeline with no name is created
and is indicated by a dotted line.

4 Click the down arrow and select Sensor. Add a second lifeline named Motion.
5 Select the vertical dotted line for the Sensor lifeline. Click and drag to the Motion lifeline. In

the To box, start to type Sensordata and choose SensorData from the drop down menu. A
message is created from the SensorData port on the Sensor component to the SensorData
port on the Motion component.

6 Click on the message to see where to place the message condition. Enter a message trigger
condition in the form:

rising(SensorData.distance1-1)

 Implement Behaviors for Architecture Model Simulation

2-43



The signal name is a data element on a data interface. The message will be recognized at the
zero-crossing event when the value of SensorData.distance1 rises to 1.

See Also

More About
• “System Composer Concepts” on page 3-2

2 Compose an Architecture Model

2-44



System Composer Terminology

3



System Composer Concepts
System Composer combines concepts from systems engineering with concepts from Simulink. This
page will define these concepts and their respective applications to provide you with a better
understanding of how these domains overlap in System Composer.

Author Architecture Models
An architecture model in System Composer consists of the common Simulink constructions:
components, ports, and connectors. An architecture represents the system of components.

3 System Composer Terminology

3-2



Term Definition Application More Information
architecture A System Composer

architecture represents a
system of components and
how they interface with
each other structurally and
behaviorally. You can
represent specific
architectures using
alternate views.

Different types of
architectures describe
different aspects of systems:

• Functional architecture
describes the flow of
data in a system.

• Logical architecture
describes the intended
operation of a system.

• Physical architecture
describes the platform or
hardware in a system.

You can define parameters
on the architecture level
using the Parameter
Editor.

• “Compose Architectures
Visually”

• “Author Parameters in
System Composer Using
Parameter Editor”

model A System Composer model
is the file that contains
architectural information,
including components,
ports, connectors,
interfaces, and behaviors.

Perform operations on a
model:

• Extract the root-level
architecture contained in
the model.

• Apply profiles.
• Link interface data

dictionaries.
• Generate instances from

model architecture.

A System Composer model
is stored as an SLX file.

“Create Architecture Model
with Interfaces and
Requirement Links” on page
2-4

component A component is a nontrivial,
nearly independent, and
replaceable part of a system
that fulfills a clear function
in the context of an
architecture. A component
defines an architectural
element, such as a function,
a system, hardware,
software, or other
conceptual entity. A
component can also be a
subsystem or subfunction.

Represented as a block, a
component is a part of an
architecture model that can
be separated into reusable
artifacts. Transfer
information between
components with:

• Port interfaces using the
Interface Editor

• Parameters using the
Parameter Editor

“Components”

 System Composer Concepts

3-3



Term Definition Application More Information
port A port is a node on a

component or architecture
that represents a point of
interaction with its
environment. A port permits
the flow of information to
and from other components
or systems.

There are different types of
ports:

• Component ports are
interaction points on the
component to other
components.

• Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.

“Ports”

connector Connectors are lines that
provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

A connector allows two
components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

“Connections”

Manage Variants
Create variant components and implement multiple design alternatives or variants, chosen based on
programmatic rules. Add variant choices to any component to make a variant component. The active
choice represents the original component.

3 System Composer Terminology

3-4



Term Definition Application More Information
variant A variant is one of many

structural or behavioral
choices in a variant
component.

Use variants to quickly
swap different architectural
designs for a component
while performing analysis.

“Create Variants”

variant
control

A variant control is a string
that controls the active
variant choice.

Set the variant control to
programmatically control
which variant is active.

“Set Variant Control
Condition”

Manage Interfaces
Assign interfaces to ports using the Interface Editor in Dictionary View. Use an Adapter block to
reconcile differences between interfaces on a connector between ports.

 System Composer Concepts

3-5



Manage interfaces local to a port using the Interface Editor in Port Interface View.

3 System Composer Terminology

3-6



Term Definition Application More Information
interface
data
dictionary

An interface data dictionary
is a consolidated list of all
the interfaces and value
types in an architecture and
where they are used.

Local interfaces on a
System Composer model
can be saved in an interface
data dictionary using the
Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.

• “Manage Interfaces with
Data Dictionaries”

• “Reference Data
Dictionaries”

data
interface

A data interface defines the
kind of information that
flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

Data interfaces represent
the information that is
shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

• “Create Architecture
Model with Interfaces
and Requirement Links”
on page 2-4

• “Define Port Interfaces
Between Components”

data element A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

• Pins or wires in a
connector or harness.

• Messages transmitted
across a bus.

• Data structures shared
between components.

• “Create Interfaces”
• “Assign Interfaces to

Ports”

value type A value type can be used as
a port interface to define
the atomic piece of data
that flows through that port
and has a top-level type,
dimension, unit, complexity,
minimum, maximum, and
description.

You can also assign the type
of data elements in data
interfaces to value types.
Add value types to data
dictionaries using the
Interface Editor so that
you can reuse the value
types as interfaces or data
elements.

“Create Value Types as
Interfaces”

owned
interface

An owned interface is an
interface that is local to a
specific port and not shared
in a data dictionary or the
model dictionary.

Create an owned interface
to represent a value type or
data interface that is local
to a port.

“Define Owned Interfaces
Local to Ports”

 System Composer Concepts

3-7



Term Definition Application More Information
adapter An adapter helps connect

two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog:

• Create and edit
mappings between input
and output interfaces.

• Apply an interface
conversion UnitDelay
to break an algebraic
loop.

• Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

• When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

• “Interface Adapter”
• Adapter

Author Physical Models
Author physical models in System Composer using subsystem components. A subsystem component is
a Simulink subsystem that is part of the parent System Composer architecture model. You can add
Simscape behavior to a subsystem component using physical ports, connectors, and interfaces. For
more information, see “Author Model Behavior” on page 3-21.

3 System Composer Terminology

3-8



Term Definition Application More Information
physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

 System Composer Concepts

3-9



Term Definition Application More Information
physical
interface

A physical interface defines
the kind of information that
flows through a physical
port. The same interface
can be assigned to multiple
ports. A physical interface is
a composite interface
equivalent to a
Simulink.ConnectionBu
s object that specifies any
number of
Simulink.ConnectionEl
ement objects.

Use a physical interface to
bundle physical elements to
describe a physical model
using at least one physical
domain.

“Specify Physical Interfaces
on Ports”

physical
element

A physical element
describes the decomposition
of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

Define the Type of a
physical element as a
physical domain to enable
use of that domain in a
physical model.

“Describe Component
Behavior Using Simscape”

Extend Architectural Elements
Create a profile in the Profile Editor and add stereotypes to it with properties. Apply the stereotype
to a component, and set the property value in the Property Inspector.

3 System Composer Terminology

3-10



 System Composer Concepts

3-11



Term Definition Application More Information
stereotype A stereotype is a custom

extension of the modeling
language. Stereotypes
provide a mechanism to
extend the architecture
language elements by
adding domain-specific
metadata.

Apply stereotypes to model
elements such as root-level
architecture, component
architecture, connectors,
ports, data interfaces, value
types, functions,
requirements, and links.
Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.

“Extend Architectural
Design Using Stereotypes”
on page 2-18

property A property is a field in a
stereotype. You can specify
property values for each
element to which the
stereotype is applied.

Use properties to store
quantitative characteristics,
such as weight or speed,
that are associated with a
model element. Properties
can also be descriptive or
represent a status. You can
view and edit the properties
of each element in the
architecture model using
the Property Inspector.

• “Set Properties” on page
2-22

• “Add Properties with
Stereotypes”

• “Set Properties for
Analysis”

profile A profile is a package of
stereotypes that you can use
to create a self-consistent
domain of element types.

Author profiles and apply
profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

• “Define Profiles and
Stereotypes”

• “Use Stereotypes and
Profiles”

Manage and Verify Requirements
In the Requirements Perspective, you can create, manage, and allocate requirements. View the
requirements on the architecture model. This functionality requires a Requirements Toolbox license.

3 System Composer Terminology

3-12



Use Simulink Test to create a test harness for a System Composer component to validate simulation
results and verify design in the Test Manager. This functionality requires a Simulink Test license.

 System Composer Concepts

3-13



Term Definition Application More Information
requirement
s

Requirements are a
collection of statements
describing the desired
behavior and characteristics
of a system. Requirements
ensure system design
integrity and are
achievable, verifiable,
unambiguous, and
consistent with each other.
Each level of design should
have appropriate
requirements.

To enhance traceability of
requirements, link system,
functional, customer,
performance, or design
requirements to
components and ports. Link
requirements to each other
to represent derived or
allocated requirements.
Manage requirements from
the Requirements Manager
on an architecture model or
through custom views.
Assign test cases to
requirements using the Test
Manager for verification
and validation.

“Link and Trace
Requirements”

requirement
set

A requirement set is a
collection of requirements.
You can structure the
requirements hierarchically
and link them to
components or ports.

Use the Requirements
Editor to edit and refine
requirements in a
requirement set.
Requirement sets are stored
in SLREQX files. You can
create a new requirement
set and author requirements
using Requirements
Toolbox, or import
requirements from
supported third-party tools.

“Manage Requirements”

requirement
link

A link is an object that
relates two model-based
design elements. A
requirement link is a link
where the destination is a
requirement. You can link
requirements to
components or ports.

View links using the
Requirements Perspective
in System Composer. Select
a requirement in the
Requirements Browser to
highlight the component or
the port to which the
requirement is assigned.
Links are stored externally
as SLMX files.

• “Create Architecture
Model with Interfaces
and Requirement Links”
on page 2-4

• “Update Reference
Requirement Links from
Imported File”

3 System Composer Terminology

3-14



Term Definition Application More Information
test harness A test harness is a model

that isolates the component
under test with inputs,
outputs, and verification
blocks configured for
testing scenarios. You can
create a test harness for a
model component or for a
full model. A test harness
gives you a separate testing
environment for a model or
a model component.

Create a test harness for a
System Composer
component to validate
simulation results and verify
design. The Interface
Editor is accessible in
System Composer test
harness models to enable
behavior testing and
implementation-
independent interface
testing.

• “Verify and Validate
Requirements Using Test
Harnesses”

• “Create a Test Harness”
(Simulink Test)

Allocate Architecture Models
In the Allocation Editor, allocate components between two architecture models, based on a
dependency or a directed relationship.

Term Definition Application More Information
allocation An allocation establishes a

directed relationship from
architectural elements —
components, ports, and
connectors — in one model
to architectural elements in
another model.

Resource-based allocation
allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

“Allocate Architectures in
Tire Pressure Monitoring
System”

 System Composer Concepts

3-15



Term Definition Application More Information
allocation
scenario

An allocation scenario
contains a set of allocations
between a source and a
target model.

Allocate between model
elements in an allocation
scenario. The default
allocation scenario is called
Scenario 1.

“Systems Engineering
Approach for SoC
Applications”

allocation
set

An allocation set consists of
one or more allocation
scenarios that describe
various allocations between
a source and a target model.

Create an allocation set
with allocation scenarios in
the Allocation Editor.
Allocation sets are saved as
MLDATX files.

• “Create and Manage
Allocations Interactively”

• “Create and Manage
Allocations
Programmatically”

Create Custom Views
Apply a view filter to generate an element group of components for the view in the Architecture
Views Gallery.

3 System Composer Terminology

3-16



Term Definition Application More Information
view A view shows a

customizable subset of
elements in a model. Views
can be filtered based on
stereotypes or names of
components, ports, and
interfaces, along with the
name, type, or units of an
interface element. Create
views by adding elements
manually. Views create a
simplified way to work with
complex architectures by
focusing on certain parts of
the architectural design.

You can use different types
of views to represent the
system:

• Operational views
demonstrate how a
system will be used and
should be integrated
with requirements
analysis.

• Functional views focus
on what the system must
do to operate.

• Physical views show how
the system is
constructed and
configured.

A viewpoint represents a
stakeholder perspective that
specifies the contents of the
view.

“Modeling System
Architecture of Keyless
Entry System”

element
group

An element group is a
grouping of components in a
view.

Use element groups to
programmatically populate
a view.

• “Create Architecture
Views Interactively”

• “Create Architectural
Views Programmatically”

query A query is a specification
that describes certain
constraints or criteria to be
satisfied by model elements.

Use queries to search
elements with constraint
criteria and to filter views.

“Find Elements in Model
Using Queries”

component
diagram

A component diagram
represents a view with
components, ports, and
connectors based on how
the model is structured.

Component diagrams allow
you to programmatically or
manually add and remove
components from the view.

“Inspect Components in
Custom Architecture Views”
on page 2-29

 System Composer Concepts

3-17



Term Definition Application More Information
hierarchy
diagram

You can visualize a
hierarchy diagram as a view
with components, ports,
reference types, component
stereotypes, and stereotype
properties.

There are two types of
hierarchy diagrams:

• Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

• Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

“Display Component
Hierarchy and Architecture
Hierarchy Using Views”

Analyze Architecture Models
Create an analysis function to analyze power consumption in the RobotDesign architecture model.
function RobotDesign_1(instance,varargin)

if instance.isComponent() && ~isempty(instance.Components)...
 && instance.hasValue('RobotProfile.ElectricalComponent.Power')
    sysComponent_power = 0;
    for child = instance.Components
        if child.hasValue('RobotProfile.ElectricalComponent.Power')
           comp_power = child.getValue('RobotProfile.ElectricalComponent.Power');
           sysComponent_power = sysComponent_power + comp_power;
        end
    end
    instance.setValue('RobotProfile.ElectricalComponent.Power',sysComponent_power);
end

Analyze the robot design using the analysis function to determine total power usage.

3 System Composer Terminology

3-18



Term Definition Application More Information
analysis Analysis is a method for

quantitatively evaluating an
architecture for certain
characteristics. Static
analysis analyzes the
structure of the system.
Static analysis uses an
analysis function and
parametric values of
properties captured in the
system model.

Use analyses to calculate
overall reliability, mass roll-
up, performance, or thermal
characteristics of a system,
or to perform a SWaP
analysis.

• “Analyze Architecture
Model with Analysis
Function” on page 2-24

• “Analyze Architecture”

analysis
function

An analysis function is a
MATLAB function that
computes values necessary
to evaluate the architecture
using the properties of each
element in the model
instance.

Use an analysis function to
calculate the result of an
analysis.

• “Analysis Function
Constructs”

• “Write Analysis
Function”

instance
model

An instance model is a
collection of instances.

You can update an instance
model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.

“Run Analysis Function”

instance An instance is an
occurrence of an
architecture model element
at a given point in time.

An instance freezes the
active variant or model
reference of the component
in the instance model.

“Create a Model Instance
for Analysis”

Author Sequence Diagrams
Create a sequence diagram in the Architecture Views Gallery to describe system interactions.

 System Composer Concepts

3-19



Term Definition Application More Information
sequence
diagram

A sequence diagram
represents the expected
interaction between
structural elements of an
architecture as a sequence
of message exchanges.

Use sequence diagrams to
describe how the parts of a
system interact.

• “Describe System
Behavior Using
Sequence Diagrams”

• “Use Sequence
Diagrams with
Architecture Models”

lifeline A lifeline is represented by a
head and a timeline that
proceeds down a vertical
dotted line.

The head of a lifeline
represents a component in
an architecture model.

“Add Lifelines and
Messages”

message A message sends
information from one
lifeline to another. Messages
are specified with a
message label.

A message label has a
trigger and a constraint. A
trigger determines whether
the message occurs. A
constraint determines
whether the message is
valid.

“Create Messages in
Sequence Diagram”

annotation An annotation describes the
elements of a sequence
diagram.

Use annotations to provide
detailed explanations of
elements or workflows
captured by sequence
diagrams.

“Use Annotations to
Describe Elements of
Sequence Diagram”

fragment A fragment indicates how a
group of messages within it
execute or interact.

A fragment is used to model
complex sequences, such as
alternatives, in a sequence
diagram.

“Author Sequence Diagram
Fragments”

3 System Composer Terminology

3-20



Term Definition Application More Information
operand An operand is a region in a

fragment. Fragments have
one or more operands
depending on the kind of
fragment. Operands can
contain messages and
additional fragments.

Each operand can include a
constraint to specify
whether the messages
inside the operand execute.
You can express the
precondition of an operand
as a MATLAB Boolean
expression using the input
signal of any lifeline.

“Add Fragments and
Operands”

Author Model Behavior
Use a reference component to decompose and reuse architectural components and Simulink model
behaviors. Use a subsystem component or state chart to implement Simulink and Stateflow behaviors.

 System Composer Concepts

3-21



Term Definition Application More Information
reference
component

A reference component is a
component whose definition
is a separate architecture
model, Simulink behavior
model, or Simulink
subsystem behavior. A
reference component
represents a logical
hierarchy of other
compositions.

You can reuse compositions
in the model using
reference components.
There are three types of
reference components:

• Model references are
Simulink models.

• Subsystem references
are Simulink
subsystems.

• Architecture references
are System Composer
architecture models.

• “Implement Component
Behavior Using
Simulink”

• “Create Reference
Architecture”

parameter A parameter is an instance-
specific value of a value
type.

Parameters are available for
inlined architectures and
components. Parameters are
also available for
components linked to model
references or architecture
references that specify
model arguments. You can
specify independent values
for a parameter on each
component.

• “Author Parameters in
System Composer Using
Parameter Editor”

• “Access Model
Arguments as
Parameters on Reference
Components”

• “Use Parameters to
Store Instance Values
with Components”

subsystem
component

A subsystem component is a
Simulink subsystem that is
part of the parent System
Composer architecture
model.

Add Simulink subsystem
behavior to a component to
author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

• “Create Simulink
Subsystem Behavior
Using Subsystem
Component”

• “Create Simulink
Subsystem Component”

state chart A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

• “Implement Behaviors
for Architecture Model
Simulation” on page 2-36

• “Implement Component
Behavior Using
Stateflow Charts”

3 System Composer Terminology

3-22



Design Software Architectures
Design a software architecture model, define the execution order of the functions from the
components, simulate the design in the architecture level, and generate code.

View the software architecture diagram in a class diagram in the Architecture Views Gallery.

 System Composer Concepts

3-23



Term Definition Application More Information
software
architecture

A software architecture is a
specialization of an
architecture for software-
based systems, including
the description of software
compositions, component
functions, and their
scheduling.

Use software architectures
in System Composer to
author software
architecture models
composed of software
components, ports, and
interfaces. Design your
software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.

• “Author Software
Architectures”

• “Simulate and Deploy
Software Architectures”

software
component

A software component is a
specialization of a
component for software
entities, including its
functions (entry points) and
interfaces.

Implement a Simulink
export-function, rate-based,
or JMAAB model as a
software component,
simulate the software
architecture model, and
generate code.

• “Implement Behaviors
for Architecture Model
Simulation” on page 2-36

• “Create Software
Architecture from
Component”

software
composition

A software composition is a
diagram of software
components and connectors
that represents a composite
software entity, such as a
module or application.

Encapsulate functionality by
aggregating or nesting
multiple software
components or
compositions.

“Modeling Software
Architecture of Throttle
Position Control System”

function A function is an entry point
that can be defined in a
software component.

You can apply stereotypes to
functions in software
architectures, edit sample
times, and specify the
function period using the
Functions Editor.

“Author and Extend
Functions for Software
Architectures”

service
interface

A service interface defines
the functional interface
between client and server
components. Each service
interface consists of one or
more function elements.

Once you have defined a
service interface in the
Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

• “Author Service
Interfaces for Client-
Server Communication”

• systemcomposer.inte
rface.ServiceInterf
ace

3 System Composer Terminology

3-24



Term Definition Application More Information
function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

• Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

• Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

 System Composer Concepts

3-25



See Also

More About
• “Compose and Analyze Systems Using Architecture Models” on page 2-2
• “Organize System Composer Files in Projects”
• “Simulate Mobile Robot with System Composer Workflow”
• “Modeling System Architecture of Small UAV”

External Websites
• Systems Engineering: Managing System Complexity

3 System Composer Terminology

3-26

https://www.mathworks.com/videos/series/systems-engineering.html

	Product Overview
	System Composer Product Description

	Compose an Architecture Model
	Compose and Analyze Systems Using Architecture Models
	Create Architecture Model with Interfaces and Requirement Links
	Visually Represent System
	Edit Data Interfaces
	Decompose Components
	Robot Arm Architecture Model
	Manage Requirement Links

	Extend Architectural Design Using Stereotypes
	Mobile Robot Architecture Model
	Load Architecture Model Profile
	Apply Stereotypes to Model Elements
	Set Properties

	Analyze Architecture Model with Analysis Function
	Mobile Robot Architecture Model with Properties
	Perform Analysis

	Inspect Components in Custom Architecture Views
	Mobile Robot Architecture Model with Properties
	Create Spotlight Views from Components
	Create Filtered Architecture View

	Implement Behaviors for Architecture Model Simulation
	Robot Arm Architecture Model
	Reference Simulink Behavior Model in Component
	Add Stateflow Chart Behavior to Component
	Design Software Architecture in Component
	Represent System Interaction Using Sequence Diagrams


	System Composer Terminology
	System Composer Concepts
	Author Architecture Models
	Manage Variants
	Manage Interfaces
	Author Physical Models
	Extend Architectural Elements
	Manage and Verify Requirements
	Allocate Architecture Models
	Create Custom Views
	Analyze Architecture Models
	Author Sequence Diagrams
	Author Model Behavior
	Design Software Architectures



